IfcDimensionsForSiUnit

Natural language names
Dimensions For Si Unit
Semantic definitions at the function
Function Definition

Definition from ISO/CD 10303-41:1992: The function returns the dimensional exponents of the given SI-unit.

Argument definitions:
N : (input) the name of the unit for which the dimensional exponents will be returned.

Formal representations
EXPRESS Specification

FUNCTION IfcDimensionsForSiUnit
(n : IfcSIUnitName )     : IfcDimensionalExponents;
  CASE n OF
    METRE          : RETURN (IfcDimensionalExponents
                             (1, 0, 0, 0, 0, 0, 0));
    SQUARE_METRE   : RETURN (IfcDimensionalExponents
                             (2, 0, 0, 0, 0, 0, 0));
    CUBIC_METRE    : RETURN (IfcDimensionalExponents
                             (3, 0, 0, 0, 0, 0, 0));
    GRAM           : RETURN (IfcDimensionalExponents
                             (0, 1, 0, 0, 0, 0, 0));
    SECOND         : RETURN (IfcDimensionalExponents
                             (0, 0, 1, 0, 0, 0, 0));
    AMPERE         : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 1, 0, 0, 0));
    KELVIN         : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 0, 1, 0, 0));
    MOLE           : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 0, 0, 1, 0));
    CANDELA        : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 0, 0, 0, 1));
    RADIAN         : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 0, 0, 0, 0));
    STERADIAN      : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 0, 0, 0, 0));
    HERTZ          : RETURN (IfcDimensionalExponents
                             (0, 0, -1, 0, 0, 0, 0));
    NEWTON         : RETURN (IfcDimensionalExponents
                             (1, 1, -2, 0, 0, 0, 0));
    PASCAL         : RETURN (IfcDimensionalExponents
                             (-1, 1, -2, 0, 0, 0, 0));
    JOULE          : RETURN (IfcDimensionalExponents
                             (2, 1, -2, 0, 0, 0, 0));
    WATT           : RETURN (IfcDimensionalExponents
                             (2, 1, -3, 0, 0, 0, 0));
    COULOMB        : RETURN (IfcDimensionalExponents
                             (0, 0, 1, 1, 0, 0, 0));
    VOLT           : RETURN (IfcDimensionalExponents
                             (2, 1, -3, -1, 0, 0, 0));
    FARAD          : RETURN (IfcDimensionalExponents
                             (-2, -1, 4, 2, 0, 0, 0));
    OHM            : RETURN (IfcDimensionalExponents
                             (2, 1, -3, -2, 0, 0, 0));
    SIEMENS        : RETURN (IfcDimensionalExponents
                             (-2, -1, 3, 2, 0, 0, 0));
    WEBER          : RETURN (IfcDimensionalExponents
                             (2, 1, -2, -1, 0, 0, 0));
    TESLA          : RETURN (IfcDimensionalExponents
                             (0, 1, -2, -1, 0, 0, 0));
    HENRY          : RETURN (IfcDimensionalExponents
                             (2, 1, -2, -2, 0, 0, 0));
    DEGREE_CELSIUS : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 0, 1, 0, 0));
    LUMEN          : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 0, 0, 0, 1));
    LUX            : RETURN (IfcDimensionalExponents
                             (-2, 0, 0, 0, 0, 0, 1));
    BECQUEREL      : RETURN (IfcDimensionalExponents
                             (0, 0, -1, 0, 0, 0, 0));
    GRAY           : RETURN (IfcDimensionalExponents
                             (2, 0, -2, 0, 0, 0, 0));
    SIEVERT        : RETURN (IfcDimensionalExponents
                             (2, 0, -2, 0, 0, 0, 0));
    OTHERWISE      : RETURN (IfcDimensionalExponents
                             (0, 0, 0, 0, 0, 0, 0));
  END_CASE;

END_FUNCTION;

Link to this page  Link to this page